07.03.2024

Точность нейросетей для распознавания изображений повысили ученые Перми

Точность нейросетей для распознавания изображений повысили ученые Перми

Новая схема обработки изображений находит предметы вне зависимости от их размеров

Ученые «Пермского национального исследовательского политехнического университета» (ПНИПУ) разработали подсистему машинного зрения, которая обеспечивает надежное распознавание мелких и разноудаленных от камеры объектов. Предложенная схема поможет, например, обнаружить оружие или опасные предметы в толпе, сообщает пресс-служба ПНИПУ.

Новая подсистема машинного зрения позволяет достичь высокой точности классификации и сегментации. Классификация дает возможность определить, к какой категории относится объект, а сегментация – выделить и обозначить его контуры. Политехники предложили двухступенную (двухэтапную) схему обработки изображений независимыми нейронными сетями. Она учитывает контекст сцены и адаптируется к степени удаленности объектов или изменению ракурса съемки.

Основной принцип разработанной политехниками схемы — разделение классов на «суперобъекты» и «вложенные объекты». На первом этапе нейросеть ищет и выделяет область интереса: остается только ограничивающий прямоугольник с суперобъектом («оружие» у «человека», «деталь» — часть «станка»), все остальное обрезается. Таким образом гарантируется, что искомый объект будет находиться внутри области интереса. На втором этапе происходит обнаружение и сегментация искомых объектов.

Такой подход, например, подходит для системы видеонаблюдения с возможностью обнаружения оружия и опасных предметов в толпе, когда люди находятся на разном расстоянии от камер. Обычная нейронная сеть может не различить носимое оружие на очень удаленных или очень приближенных позициях сцены. Но, если предварительно обнаружить силуэты всех людей на снимке, то детекция (распознавание) оружия будет более точной. Другие примеры — идентификация различных разноудаленных конструкций, механизмов со множеством деталей, аэрофотосъемка.

«Мы разработали новую схему обработки изображений с помощью нейронных сетей. Она находит объекты искомых категорий вне зависимости от их размеров, а также стабильна к изменению условий съемки. Увеличение точности на 25% на отдельных тестовых изображениях происходит за счет искусственного ограничения назначения категорий и локализации объектов в контексте сцены обрабатываемого изображения», — поделился кандидат технических наук, доцент кафедры автоматики и телемеханики ПНИПУ Андрей Кокоулин.

Разработка ученых Пермского Политеха улучшит распознавание изображений с помощью нейросетей, повысит точность определения мелких и разноудаленных от камеры объектов. Предложенная схема поможет, например, обнаружить оружие или опасные предметы в толпе.

Материалы по теме

Спасти ТЭК от санкций и криминала

«Варьеганнефть» готовится к пожароопасному периоду

Как обеспечить защиту персональных данных?

ВИЗ-Сталь подвела итоги месячника по гражданской защите

Сотрудники «Варьеганнефть» повысили квалификацию в области экологической безопасности

ASV-сканирование –обязательное требование стандарта PCI DSS